
COMPATIBLE WITH STANDARD TTL INTEGRATED CIRCUITS

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon npn Phototransistor
- High Direct-Current Transfer Ratio
- Base Lead Provided for Conventional Transistor Biasing
- High-Voltage Electrical Isolation . . .
 1.5-kV, or 3.55-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching:
 t_r = 5 μs, t_f = 5 μs Typical
- Designed to be Interchangeable with General Instruments MCT2 and MCT2E

MCT2 OR MCT2E . . . PACKAGE (TOP VIEW)

NC – No internal connection

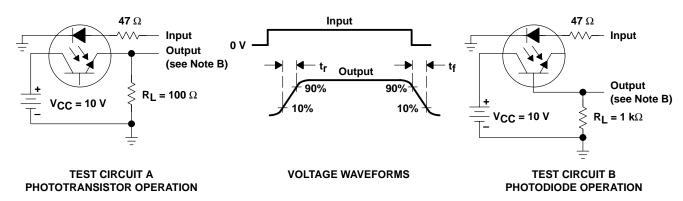
absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Input-to-output voltage: MCT2	\dots ± 1.5 kV
MCT2E	
Collector-base voltage	70 V
Collector-emitter voltage (see Note 1)	30 V
Emitter-collector voltage	7 V
Emitter-base voltage	7 V
Input-diode reverse voltage	3 V
Input-diode continuous forward current	60 mA
Input-diode peak forward current (t _w ≤ 1 ns, PRF ≤ 300 Hz)	3 A
Continuous power dissipation at (or below) 25°C free-air temperature:	
Infrared-emitting diode (see Note 2)	200 mW
Phototransistor (see Note 2)	200 mW
Total, infrared-emitting diode plus phototransistor (see Note 3)	250 mW
Operating free-air temperature range, T _A –	
Storage temperature range, T _{stq} –	55°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. This value applies when the base-emitter diode is open-circulated.
 - 2. Derate linearly to 100 °C free-air temperature at the rate of 2.67 mW/°C.
 - 3. Derate linearly to 100 °C free-air temperature at the rate of 3.33 mW/°C.

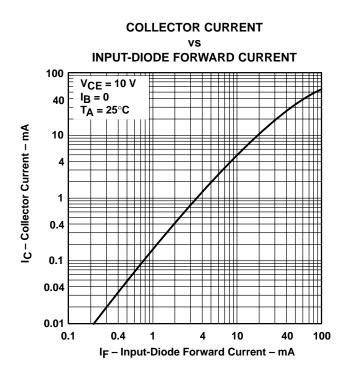
electrical characteristics at 25°C free-air temperature (unless otherwise noted)

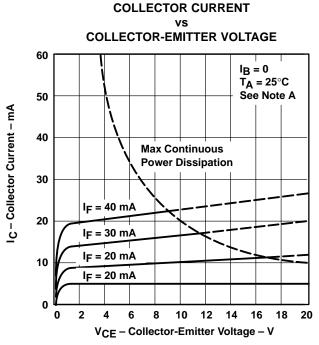

PARAMETER			TEST	CONDITI	ONS	MIN	TYP	MAX	UNIT
V(BR)CBO	Collector-base breakdown v	$I_C = 10 \mu A$,	IE = 0,	IF = 0	70			V	
V(BR)CEO	Collector-emitter breakdown	I _C =1 mA,	$I_B = 0$,	IF = 0	30			V	
V(BRECO)	Emitter-collector breakdown	$I_E = 100 \mu A$,	$I_B = 0$,	IF = 0	7			V	
I _R	Input diode static reverse cu	rrent	V _R = 3 V					10	μΑ
I _{C(on)}	On-state collector current	Phototransistor operation	V _{CE} = 10 V,	I _B = 0,	I _F = 10 mA	2	5		mA
		Photodiode operation	V _{CB} = 10 V,	IE = 0,	I _F = 10 mA		20		μΑ
I _{C(off)}	Off-state collector current	Phototransistor operation	V _{CE} = 10 V,	I _B = 0,	IF = 0		1	50	nA
		Photodiode operation	$V_{CB} = 10 \text{ V},$	IE = 0,	IF = 0		0.1	20	nA
			V _{CE} = 5 V, I _C = 100 μA,	MCT2			250		
HFE	Transistor static forward curi	r static forward current transfer ratio		MCT2E		100	300		
٧ _F	Input diode static forward voltage		$I_F = 20 \text{ mA}$				1.25	1.5	V
VCE(sat)	Collector-emitter saturation voltage		$I_C = 2 \text{ mA},$	I _B = 0,	I _F = 16 mA		0.25	4	V
rIO	Input-to-output internal resistance		V _{in-out} = ±1.5 ±3.5 See Note 4	5 kV for M 55 kV for N		10 ¹¹			Ω
C _{io}	Input-to-output capacitance		V _{in-out} = 0, See Note 4	f = 1 MH	Z,		1		pF

NOTE 4: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics

	P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time	Phototransistor operation	$V_{CC} = 10 \text{ V}, I_{C(on)} = 2 \text{ mA},$		5		
tf	Fall time	Priototiansistoi operation	$R_L = 100 \Omega$, See Test Circuit A of Figure 1		3		μs
t _r	Rise time	Photodiode operation	$V_{CC} = 10 \text{ V}, I_{C(on)} 20 \mu\text{A},$		1		
t _f	Fall time	Photodiode operation	$R_L = 1 \text{ k}\Omega$, See Test Circuit B of Figure 1		1		μs


PARAMETER MEASUREMENT INFORMATION



NOTES: A. The input waveform is supplied by a generator with the following characteristics: $Z_0 = 50 \Omega$, $t_r \le 15$ ns, duty cycle $\approx 1\%$, t_W = 100 μs . B. The output waveform is monitored on an oscilloscope with the following characteristics: $t_\Gamma \le$ 12 ns, $R_{in} \ge$ 1 M Ω , $C_{in} \le$ 20 pF.

Figure 1. Switching Times

TYPICAL CHARACTERISTICS

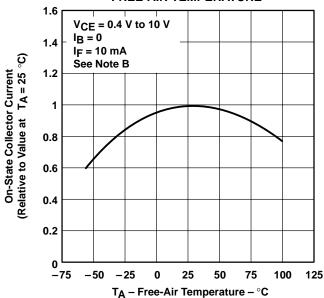

NOTE A: Pulse operation of input diode is required for operation beyond limits shown by dotted lines.

Figure 3

Figure 2

ON-STATE COLLECTOR CURRENT (RELATIVE TO VALUE AT 25°C)

FREE-AIR TEMPERATURE V_{CE} = 0.4 V to 10 V

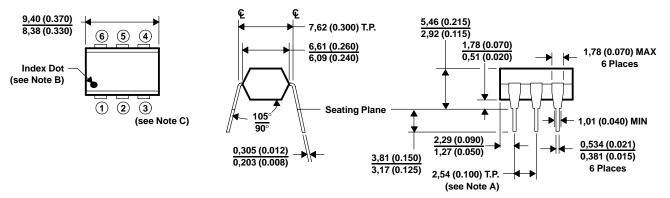

NOTE B: These parameters were measured using pulse techniques, $t_W = 1$ ms, duty cycle ≤ 2 %.

Figure 4

MECHANICAL INFORMATION

The package consists of a gallium-arsenide infrared-emitting diode and an npn silicon phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case can withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

- NOTES: A. Leads are within 0,13 (0.005) radius of true position (T.P.) with maximum material condition and unit installed.
 - B. Pin 1 identified by index dot.
 - C. Terminal connections:
 - 1. Anode (part of the infrared-emitting diode)
 - 2. Cathode (part of the infrared-emitting diode)
 - 3. No internal connection
 - 4. Emitter (part of the phototransistor)
 - 5. Collector (part of the phototransistor)
 - 6. Base (part of the phototransistor)
 - D. The dimensions given fall within JEDEC MO-001 AM dimensions.
 - E. All linear dimensions are given in millimeters and parenthetically given in inches.

Figure 5. Mechanical Information

PACKAGE OPTION ADDENDUM

8-Apr-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MCT2	OBSOLETE	PDIP	N	6	TBD	Call TI	Call TI
MCT2E	OBSOLETE	PDIP	N	6	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated