3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electronics

Features:

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio
- TX devices processed to MIL-PRF-19500

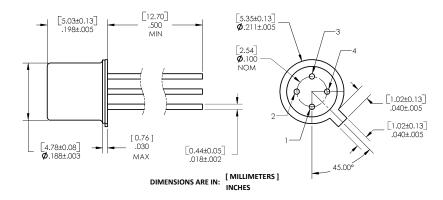
Description:

Each device is a high reliability optically coupled isolator that consists of an infrared emitting diode and a NPN silicon phototransistor which are mounted in a hermetically sealed TO-72 package. The **3C91C** and **3C92C** have a 935 nm wavelength, whereas the **3N243**, **3N244**, **3N245** and **3N262** have an 880 nm wavelength. All devices have 0.50" (12.70 mm) leads. Electrical characteristics vary.

TX devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Contact your local representative or OPTEK for more information.


Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

Part Number	LED Peak Wavelength	Sensor	Isolation Voltage (,000)	CTR Min / Max	I _F (mA) Typ / Max	V _{CE} (V) Typ / Max	Lead Length
3C91C	935 nm			0.3 / 2.0	10 / 50	10 / 50	
3C92C (TX)	935 1111			0.3 / 2.0	10 / 50	10 / 50	
3N243		Transistar	1	0.15 / NA			0.50"
3N244	000	Transistor	1	0.3 / NA	3 / 40	10/30	0.50
3N245 (TX)	880 nm			0.6 / NA			
3N262				1.0 / 5.0	1 / 40	5/30	

3C91 3C92 3N2XX Pin# 3C91 3C92 3N2XX Cathode Cathode Emitter 2 Collector **Emitter** Cathode 3 **Emitter** Collector Collector

Phototransistor Collector is connected to the Header-Base-Case for ALL versions

General Note

4

© TT electronics plc

Anode

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Anode

Anode

Form # 500-1080-001 Rev - 06/2019 Rev B 02/2020 Page 1

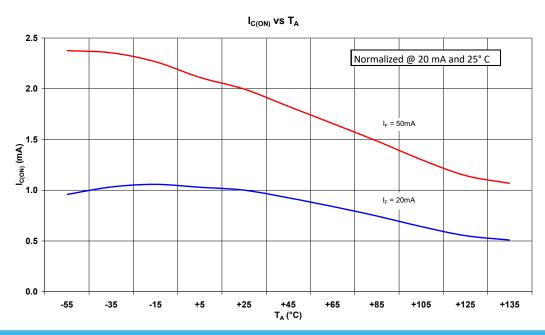
3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	-55° C to +125° C
Storage Temperature Range	-65° C to +150° C
Input to Output Isolation Voltage	± 1 kVDC ⁽¹⁾
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽²⁾

Input Diode


Forward DC Current	40 mA
Reverse Voltage	2.0 V
Power Dissipation	60 mW ⁽³⁾

Output Phototransistor

Continuous Collector Current	30 mA
Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 V
Power Dissipation	200 mW ⁽⁴⁾

Notes:

- 1. Measured with input leads shorted together and output leads shorted together.
- 2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- 3. Derate linearly 2.0 mW/° C above 25° C.
- 4. Derate linearly 0.60 mW/° C above 65° C.

General Note

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

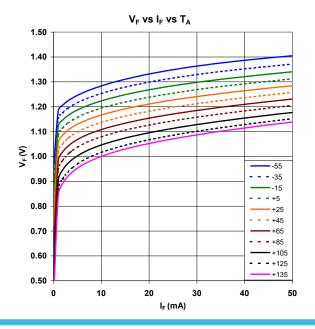
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
	Forward Voltage			4.2		
	3C91C, 3C92C (TX) 3C91C, 3C92C (TX)	-	-	1.2 1.5		$I_F = 2 \text{ mA}$ $I_F = 50 \text{ mA}$
V_{F}	3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX)	0.8 1.0	-	1.3 1.5	V	I _F = 10 mA I _F = 10 mA, T _A = -55° C
	3N243, 3N244, 3N245 (TX) 3N262	0.7 0.8	-	1.2 1.5		I _F = 10 mA, T _A = -100° C I _F = 10 mA
	3N262 3N262	1.0 0.7	-	1.7 1.3		I _F = 10 mA, T _A = -55° C I _F = 10 mA, T _A = -100° C
V _R	Reverse Voltage 3C91C, 3C92C (TX)	7	-	-	V	I _R = 0.1 mA
I _R	Reverse Current 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262			1 100 100	μΑ	V _R = 3.0 V V _R = 2.0 V V _R = 2.0 V
C _{IN}	Diode Capacitance 3C91C, 3C92C (TX)	-	25	-	pF	V = 0, f = 1 MHz
Output Pho	totransistor	•				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX)	50 30	-	-	V	I _C = 10.0 mA I _C = 1.0 mA
	3N262	40	-	-		I _C = 1.0 mA
$V_{(BR)ECO}$	Emitter-Collector Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262	7 5 7	- - -		V	$I_{C} = 10 \mu A$ $I_{E} = 100 \mu A$ $I_{E} = 100 \mu A$
	Collector Dark Current 3C91C, 3C92C (TX)	-	-	10	nA	V _{CE} = 5 V
I _{CEO}	3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX)	-	-	50 100	nA nA	$V_{CE} = 50 \text{ V}$ $V_{CF} = 10.0 \text{ V}$
-050	3N243, 3N244, 3N245 (TX)	-	-	100	μΑ	V _{CE} = 10.0 V, T _A = 100° C V _{CE} = 10.0 V
	3N262 3N262	-	-	100 100	μΑ μΑ	$V_{CE} = 10.0 \text{ V}$ $V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C}$

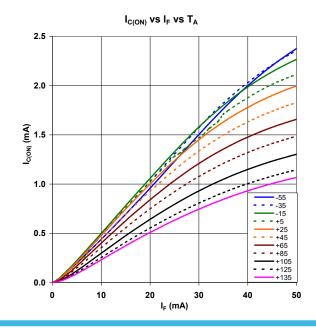
Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
I _{C(ON)}	On-State Collector Current 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243 3N243 3N243 3N244 3N244 3N244 3N244 3N244 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N262 3N262 3N262	4.0 3.0 1.5 0.3 0.5 0.5 3.0 0.8 1.0 1.0 6.0 1.5 1.5 1.5 1.0		- 20 - - - - - - - - - - - - - - - - - -	mA	$\begin{split} I_F &= 10 \text{ mA} \text{ , } V_{CE} = 5 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 0.4 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 50^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ C} \\ I_F &= $
V _{CE(SAT)}	Collector-Emitter Saturation Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262 3N262	- - - - -	- - - - -	0.4 0.3 0.3 0.3 0.3 0.3 0.3	V	$\begin{split} I_F &= 50 \text{ mA} \text{ , } I_C = 10 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 1.50 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 3.0 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 6.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 0.50 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 1.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 2.0 \text{ mA} \end{split}$
t _{ON}	Turn-on Time 3C91C, 3C92C (TX)	-	-	9	μs	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω
t _{IOFF}	Turn-off Time 3C91C, 3C92C (TX)	-	-	6	μs	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262


Electrical Specifications


Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
C _{IO}	Input-to-Output Capacitance 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262		2 -	2.5 5.0 5.0	pF	f = 1 MHz $V_{IO} = 0 \text{ V, } f = 1.00 \text{ MHz}^{(1)}$ $V_{IO} = 0 \text{ V, } f = 1.00 \text{ MHz}^{(1)}$
I _{IO}	Leakage Input -to-Output 3N243, 3N244, 3N245 (TX) 3N262		-	100 10	nA	$V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$ $V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$
R _{IO}	Isolation Resistance 3C91C, 3C92C (TX)	10 ⁹	-	-	Ω	V _{IO} = +1 kV
t _r	Output Rise Time 3N243, 3N244, 3N245 (TX) 3N262		- -	10 20	μs	V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 $\Omega^{(2)}$ V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 $\Omega^{(2)}$
t _f	Output Fall Time 3N243, 3N244, 3N245 (TX) 3N262		-	10 10	μs	V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 $\Omega^{(2)}$ V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 $\Omega^{(2)}$

Notes:

- 1. Measured with input leads shorted together and output leads shorted together.
- 2. The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} = 50 \Omega$, $t_r \le 15$ ns, duty cycle $\simeq 1\%$, pulse width $\simeq 100$ ms.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics:

3N244 3N245 3C91C 3N262