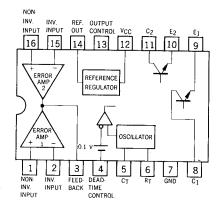


BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC494

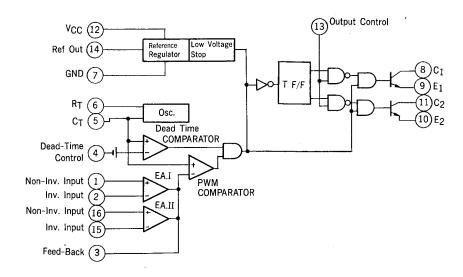
SWITCHING REGULATOR CONTROL CIRCUIT SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION

The μ PC494 is an inverter control unit which provides all the control circuitry for PWM type switching regulators. Included in this device is the voltage reference, dual error amplifiers, oscillator, pulse width modulator, pulse steering flip flop, dual alternating output switches and dead time control.


FEATURES

- Complete PWM Power Control Circuit.
- Adjustable Dead-time (0 to 100 %).
- No Double pulsing of same output during load transient condition.
- Dual error amplifiers have wide common mode input voltage capability (-0.3 V to V_{CC}-2 V).
- Circuit architecture provides easy synchronization.
- Uncommitted outputs for 250 mA sink or source.
- With Miss-operation Prevention Circuit for low level supply voltage.
- Full Pin-Compatible TL494C.


ORDERING INFORMATION

Part Number	Package
μPC494C	16 Pin Plastic DIP (300 mil)
μPC494G	16 Pin Plastic SOP (375 mil)
μPC494GS	16 Pin Plastic SOP (300 mil)

CONNECTION DIAGRAM (Top View)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_a =25 $^{\circ}$ C)

Supply Voltage	v_{cc}	41	V
Error Amplifier Input Voltage	V _{ICM}	V _{CC} +0.3	V
Output Voltage	V _{CER}	41	V
Output Current	Ic	250	mA
Total Power Dissipation	P _{T(Ta=25°C)}	1000	mW
Operating Temperature Range	T _{opt}	-20 to +85	°C
Storage Temperature Range	T _{sta}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

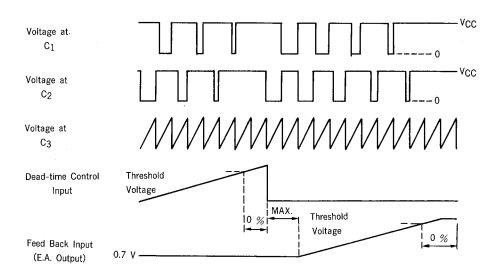
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	Vcc	7		40	٧
Output Voltage	VCER	-0.3		40	٧
Output Current	1 _C			200	mA
Error Amplifier Sink Current	IOAMP			-0.3	mA
Timing capacitor	CT	0.47		10 000	nF
Timing Resistance	R _T	1.8		500	kΩ
Oscillation Frequency	fosc	1		300	kHz
Operating Temperature	Topt	-20		+70	°c

ELECTRICAL CHARACTERISTICS (V_{CC}=15 V, f=10 kHz, $-20 \le T_a \le +70$ °C, unless otherwise noted)

BLOCK	CHARACTER	ISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
	Output Voltage		V _{ref}	4.75	5	5.25	V	I _{ref} =1 mA, T _a =25 °C
_	Line Regulation		REGIN		8	25	mV	7 V≤V _{CC} ≤40 V I _{ref} =1 mA, Ta=25 °C
Reference Section	Load Regulation		REGL		1	15	mV	1 mA≤1 _{ref} ≤10 mA, T _a =25 °C
	Temperature Coeff	icient	V _{ref}		0.01	0.03	%/°C	-20 °C = $T_a \le +85$ °C $I_{ref}=1$ mA
	(No Short Circuit Outp	ote 2) ut Current	I _{short}		50		mA	V _{ref} =0, T _a =25 °C
	Frequency		fosc		10		kHz	C _T =0.01 μF, R _T = 12 kΩ, T _a =25 °C
Oscillator	(No Standard Deviation	ote 1) of Frequency			10		%	7 V \leq V _{CC} \leq 40 V, C _T , R _T , const. T ₈ =25 °C
Section		•		1	2	%	$0 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le 70 ^{\circ}\text{C}, \text{C}_{\text{T}} = 0.01 \mu\text{F}$ R _T =12 k Ω	
					1	%	$7V \le V_{CC} \le 40 \text{ V, C}_{T}=0.01 \mu\text{F}$ $T_a=25 ^{\circ}\text{C, R}_{T}=12 \text{ k}\Omega$	
_	Input Bias Current				-2	-10	μА	0≦V _I ≦5.25 V
Dead-time Control Section	trol (Each Output)	cle		45	49		%	V ₁ =0
	Input Threshold Vo	oltago	V		3	3.3		Zero duty cycle
	mput imesnoid ve	Triage	V _{th}	. 0			\ \ \	Maximum duty cycle
	Input Offset Voltag	ge	VIO		2	10	mV	VOAMP=2.5 V
	Input Offset Currer	nt	110		25	250	nA	V _{OAMP} =2.5 V
	Input Bias Current				0.2	1	μΑ	V _{OAMP} =2.5 V
	Common Mode	Low	V	0.3			.,	7 1/21/2 - 40 1/
Error	Input Voltage	High	VICM	V _{CC} -2			V	7 V≦V _{CC} ≤40 V
Amplifier Section	Open-loop Voltage	Amplification	A _V	60	80		dB	V _{OAMP} =0.5 V to 3.5 V, T _a =25 °C
	Unity Gain Bandwi	dth		500	830		kHz	T _a =25 °C
	Common Mode Rej	ection Radio	CMR	65	80		dB	V _{CC} =40 V, T _a =25 °C
	Output Sink Current			0.3	0.7		mA	V _{OAMP} =0.7 V
	Output Source Current			-2	-10		mA	V _{OAMP} =3.5 V

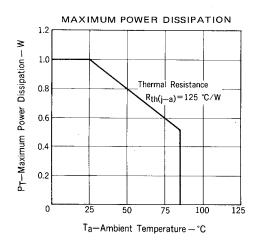
Note 1: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; Calculation expression of frequency f_{OSC} is as follows $f_{OSC} = \frac{1}{0.817 \; R_T \cdot C_T + 1.42 \cdot 10^{-6}} \quad (Hz) \qquad \qquad [R_T] = \Omega, \; [C_T] = F$

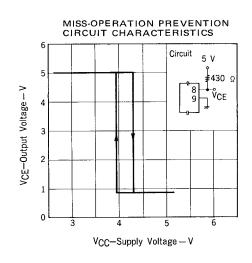
 $\sigma = \sqrt{\frac{\sum\limits_{n=1}^{N}(x_{n}-\overline{x})^{2}}{N-1}}$


Note 2: Maximum duration of short circuit cond. is one second. (non repetitive)

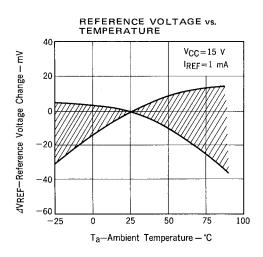
BLOCK	CHARACTER	ISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
PWM	Input Threshold Vo	oltage			4	4.5	V	Zero Duty Cycle
Section	Input Sink Current			0.3	0.7		mA	V _(pin 3) =0.7 V
	Collector Cutoff Cu	ırrent	ICER			100	μΑ	V _{CE} =40 V, V _{CC} =40 V
	Emitter Cutoff Cur	rent				-100	μΑ	V _{CC} =V _C =40 V
	Callagtor Saturation	n Valtana	V _{CE(sat)}		0.95	1.3	V	I _C =200 mA, V _E =0, Common Emitter
0	Collector Saturation	n vortage	VCE(ON)		1.6	2.5	V	I _E =200 mA, V _C =15 V Emitter follower
Output Section	Output Voltage	common Emitter			100	200	ns	
	Rise Time	Emitter follower	t _r		100	200	ns	V _{CC} =15 V, R _L =150 Ω
	Output Voltage	common Emitter	tf		70	200	ns	T _a =25 °C
	Fall Time	Emitter follower			70	200	ns	
Total	Standby Current		¹CC(S.B)		8	12.5	mA	V _{CC} =15 V all other inputs and outputs open
Device	Bias Current	•	ICC(BI.)		10		mA	V(pin 4)=2 V, see Fig. 1

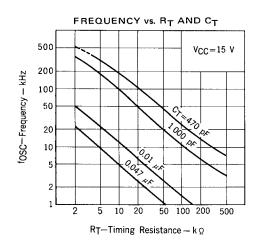
Fig. 1 Test Circuit

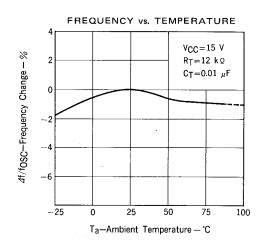

Voltage Waveform

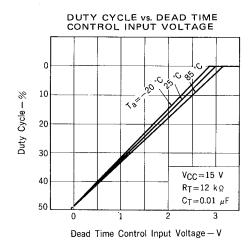


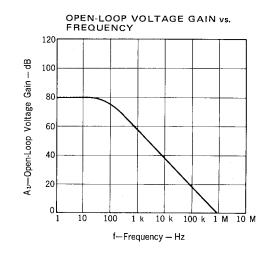
FUNCTION TABLE

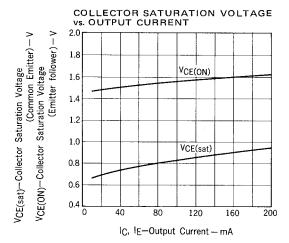

OUTPUT CONTROL INPUT (13 pin)	OUTPUT FUNCTION
At Ref-Out	Normal push-pull operation
Grounded	Single-ended or parallel output

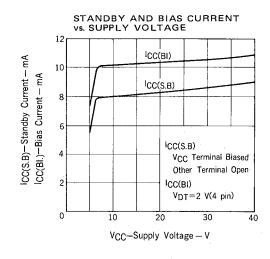

TYPICAL PERFORMANCE CHARACTERISTICS (T_a =25 \pm 2 $^{\circ}$ C, V_{1N} =15 V)

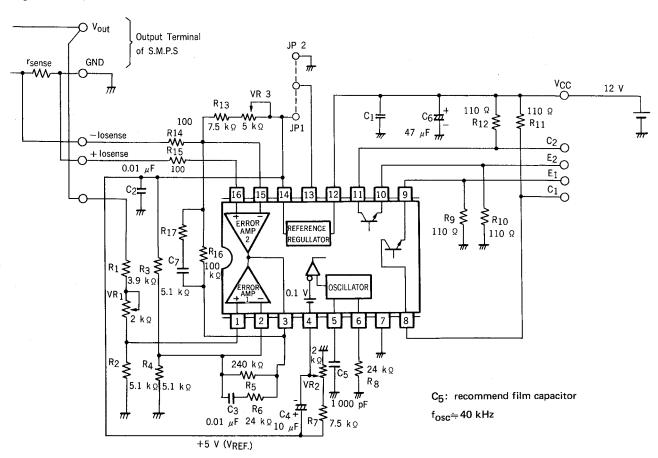






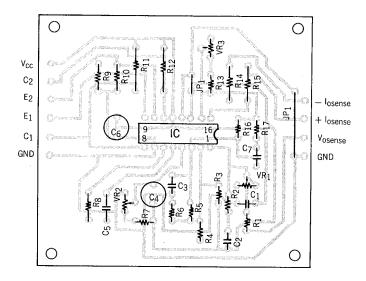






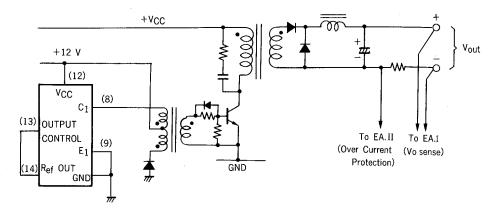
BASIC APPLICATION CIRCUIT

Fig. 2 Circuit

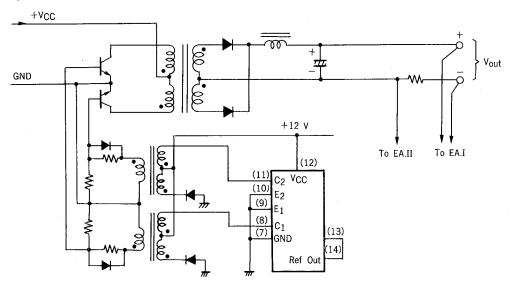


CONNECTION DIAGRAM

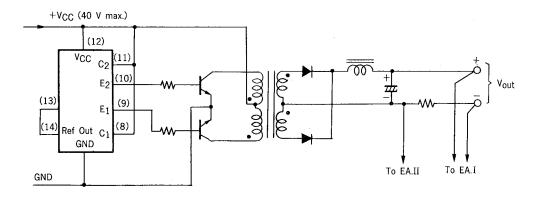
OUTPUT FUNCTION	OUTPUT CONTROL INPUT (13 pin)	OUTPUT MODE	OUTPUT VOLTAGE WAVEFORM
Push-Pull	At Ref-Out	Open Collector (Rg, R ₁₀ 0 Ω)	C1
Operation	(JP1 Wired)	Emitter Follower (R ₁₁ , R ₁₂ 0 Ω)	E1
Single-Ended or	Grounded	Open Collector (R ₉ , R ₁₀ 0 Ω)	C1,C2 [] 0
Parallel Output (JP2 Wired)	(JP2 Wired)	Emitter Follower (R ₁₁ , R ₁₂ 0 Ω)	E1, E2


Printed Pattern

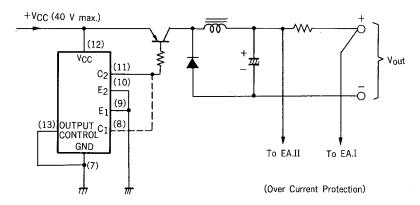
(Pattern Side, Actual Size)


TYPICAL EXAMPLE OF APPLICATION CIRCUITS

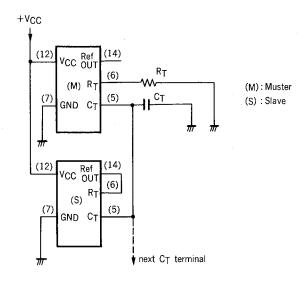
1) Forward Type



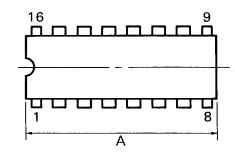
2) Push-pull Type

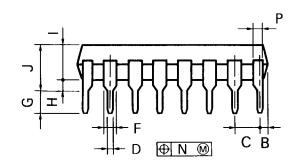

(Isolated)

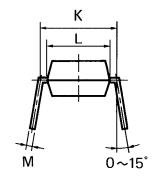
(Non Isolated)



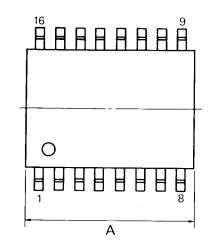
3) Stepdown Chopper

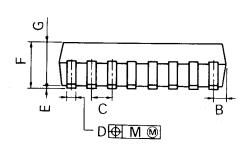


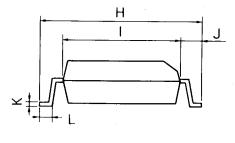

SYNCRONIZED OPERATION


If syncronized operation is needed, muster-slave circuit can be used. This circuit is shown bellow. Initially, R_T terminal of slave IC is connected to Pin 14 (Ref Out) and internal oscillator is stopped.

16 PIN PLASTIC DIP (300 mil) (μPC494C)

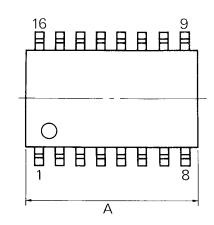

P16C-100-300B

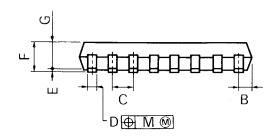

NOTES

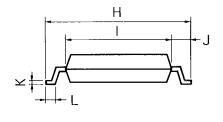

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	20.32 MAX.	0.800 MAX.
В	1.27 MAX.	0.050 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ± 0.10	0.020 + 0.004
F	1.1 MIN.	0.043 MIN.
G	3.5 ^{± 0.3}	0.138 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
М	0.25 -0.05	0.010 +0.004
N	0.25	0.01
Р	1.1 MIN.	0.043 MIN.

16PIN PLASTIC SOP (375 mil) (µPC494G)


NOTE


Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


P16GM-50-375B-1

ITEM	MILLIMETERS	INCHES
Α	10.46 MAX.	0.412 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40 - 0.05	0.016 -0.003
E	0.1-0.1	0.004 + 0.008
F	2.9 MAX.	0.115 MAX.
G	2.50	0.098
Н	10.3 ^{±0.3}	0.406 + 0.012
1	7.2	0.283
J	1.6	0.063
К	0.15 -0.05	0.006 + 0.004
L	0.8 ^{±0.2}	0.031 -0.008
М	0.12	0.005

16PIN PLASTIC SOP (300 mil) (µPC494GS)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P16GM-50-300B-1

ITEM	MILLIMETERS	INCHES
Α	10.46 MAX.	0.412 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40 -0.05	0.016 - 0.003
Е	0.1 ^{±0.1}	0.004 ^{±0.004}
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7 ^{±0.3}	0.303 ^{±0.012}
1	5.6	0.220
J	1.1	0.043
К	0.20 +0.10	0.008 + 0.004
L	0.6 ^{±0.2}	0.024 -0.008
М	0.12	0.005

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.