### DEVELOPMENT SAMPLE DATA

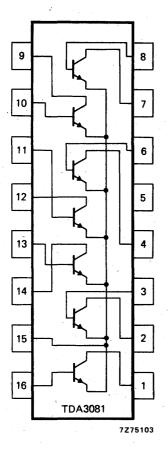
This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production TDA3081 TDA3082

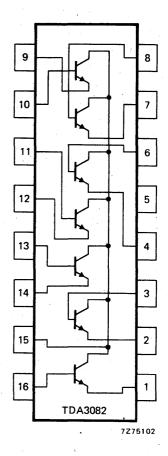
## SEVEN-TRANSISTOR ARRAYS

The TDA3081 and TDA3082 are monolithic integrated circuits each consisting of seven separate n-p-n transistors on a common substrate.

The transistors are capable of driving loads up to 100 mA. At the same time the transistor geometry used gives maximum current gain at quite low currents, making the devices also suitable for small signal applications.

In the TDA3081 the transistors are connected in common emitter configuration whilst in the TDA3082 the collectors are common.


The transistor arrays are particularly suitable for driving light-emitting diodes and seven-segment displays as well as for general purpose applications.

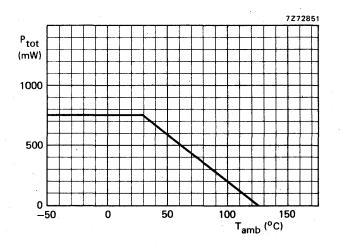

| QUICK REFERENCE DATA                    |                  |      |     |    |  |  |  |
|-----------------------------------------|------------------|------|-----|----|--|--|--|
| · Collector-base voltage (open emitter) | V <sub>CBO</sub> | max. | 50  | v  |  |  |  |
| Collector-emitter voltage (open base)   | V <sub>CEO</sub> | max. | 35  | v  |  |  |  |
| Collector current (d.c.)                | $^{\rm I}{ m C}$ | max. | 100 | mA |  |  |  |
| Power dissipation : any one transistor  | Р                | max. | 500 | m₩ |  |  |  |
| total package                           | P <sub>tot</sub> | max. | 750 | mŴ |  |  |  |

**CONNECTION DIAGRAMS** (see page 2)

PACKAGE OUTLINE plastic 16-lead dual in-line (see general section).

### CONNECTION DIAGRAMS






Note: pins 5 are substrate.

2

**RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) Each transistor

| Voltages           |                                    |                  |        |      |    |  |
|--------------------|------------------------------------|------------------|--------|------|----|--|
| Collector-emitter  | voltage (open base)                | V <sub>CEO</sub> | max.   | 35   | V  |  |
| Collector-base vol | tage (open emitter)                | V <sub>CBO</sub> | max.   | 50   | V  |  |
| Collector-substrat | e voltage (open base and emitter)  | V <sub>CSO</sub> | max.   | 50   | V  |  |
| Emitter-base volta | ge (open collector)                | V <sub>EBO</sub> | max.   | 6    | V  |  |
| Currents           |                                    |                  |        |      |    |  |
| Collector current  | (d.c.)                             | $^{I}C$          | max.   | 100  | mA |  |
| Base current (d.c. | )                                  | IB               | max.   | 20   | mA |  |
| Power dissipation  |                                    |                  |        |      |    |  |
| Power dissipation: | any one transistor                 | Р                | max.   | 500  | mW |  |
|                    | total package (see derating curve) | P <sub>tot</sub> | max.   | 750  | mW |  |
| Temperatures       | •                                  |                  |        |      |    |  |
| Operating ambient  | temperature                        | Tamb             | -40 to | +125 | ٥Ċ |  |
| Storage temperatu  | re                                 | T <sub>stg</sub> | -50 to | +125 | °C |  |
| Junction temperatu | re                                 | Тј               | max.   | 125  | ٥C |  |
|                    |                                    |                  |        |      |    |  |



August 1976

3.

# TDA3081 TDA3082

**CHARACTERISTICS** at  $T_{amb}$  = 25 °C unless otherwise specified

| Collector-emitter breakdown voltage $I_{C} = 1 \text{ mA}; I_{B} = 0$                                                                 | V <sub>(BR)</sub> CEO                     | >              | 35                | v      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|-------------------|--------|
| Collector-substrate breakdown voltage $I_{C} = 1 \text{ mA}; I_{B} = 0; I_{E} = 0$                                                    | V <sub>(BR)</sub> CSO                     | >              | 50                | V.     |
| Collector-base breakdown voltage $I_{C} = 10 \ \mu A$ ; $I_{E} = 0$                                                                   | V <sub>(BR)</sub> CBO                     | >              | 50                | V      |
| Emitter-base breakdown voltage<br>$I_E = 10 \ \mu A; I_C = 0$                                                                         | V <sub>(BR)EBO</sub>                      | typ.<br>6,5 to |                   | V<br>V |
| D.C. current gain<br>$I_E = 10 \ \mu A$ ; $V_{CE} = 5 \ V$<br>$I_E = 1 \ mA$ ; $V_{CE} = 5 \ V$<br>$I_E = 20 \ mA$ ; $V_{CE} = 5 \ V$ | <sup>h</sup> FE<br><sup>h</sup> FE<br>hFE | 50 to          | 300<br>300<br>200 |        |
| Saturation voltage<br>I <sub>C</sub> = 5 mA; I <sub>B</sub> = 0,5 mA                                                                  | V <sub>CEsat</sub>                        | typ.<br><      | 0,2<br>0,4        | V<br>V |
| $I_{C} = 50 \text{ mA}; I_{B} = 5 \text{ mA}$                                                                                         | V <sub>CEsat</sub>                        | typ.<br><      | 0,4<br>0,8        | V<br>V |

#### **OPERATING NOTE**

As each collector forms a parasitic diode with the substrate, the substrate has to be connected to a voltage which is lower than the lowest collector voltage. To avoid parasitic coupling between the transistors, the substrate (pin 5) should be connected to signal ground.