
Current Transducer LC 300-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 300 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		300 0 ± 500 $\mathbf{R}_{Mmin} \mathbf{R}_{Mmax}$		A A
	with ± 15 V	@ ± 300 A _{max}	0	50 15	Ω
		@ ± 500 A _{max}	0	15	
SN	Secondary nominal r.m.s. current		150		mΑ
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		1:200	00	
V_{c}	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		20 + I _s	S	mΑ
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC	3		kV	

Accuracy - Dynamic performance data

X _G	Overall accuracy $@$ I_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	0°C + 70°C	Typ ± 0.3	Max ± 0.3 ± 0.5	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	00	μs A/μs kHz

General data

$T_{_{A}}$	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	35	Ω
m	Mass	150	g
	Standards ²⁾	EN 50178	

Features

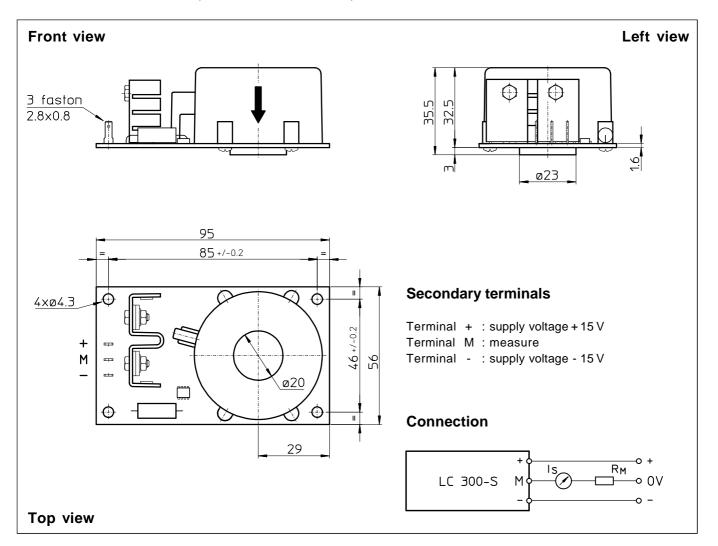
- Closed loop (compensated) current transducer using the Hall effect
- Open construction on 95 x 56 mm PC board
- Patent pending.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) With a di/dt of 100 A/µs

2) A list of corresponding tests is available

980716/5

Dimensions LC 300-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- · Connection of secondary
- \pm 0.3 mm
- 4 holes \varnothing 4.3 mm
- \varnothing 20 mm

Faston 2.8 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.