

DPG 60 I 400 HA

advanced

HiPerFRED

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DPG 60 I 400 HA

 $V_{RRM} = 400 V$ $I_{FAV} = 60 A$ $t_{rr} = 45 ns$

Backside: cathode

Features / Advantages:

- · Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

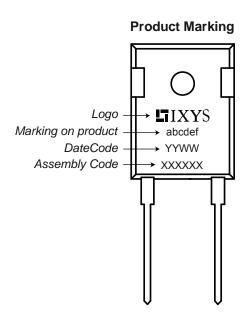
- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

- Housing: TO-247
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			400	V
I _R	reverse current	V _R = 400 V	$T_{VJ} = 25^{\circ}C$			1	μA
		V _R = 400 V	$T_{VJ} = 150$ °C			0.3	mΑ
V _F	forward voltage	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			1.47	V
		$I_F = 120 A$				1.80	V
		I _F = 60 A	T _{VJ} = 150°C			1.22	V
		$I_F = 120 A$				1.59	V
I _{FAV}	average forward current	rectangular, d = 0.5	$T_{c} = 120^{\circ}C$			60	Α
V_{F0}	threshold voltage slope resistance $ T_{VJ} = 175 ^{\circ}\text{C} $				0.81	V	
r _F						6.1	mΩ
R _{thJC}	thermal resistance junction to case					0.55	K/W
T _{VJ}	virtual junction temperature			-55		175	°C
P_{tot}	total power dissipation		$T_c = 25^{\circ}C$			275	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			600	Α
I _{RM}	max. reverse recovery current		$T_{VJ} = 25^{\circ}C$		4		Α
		$I_F = 60 \text{ A}; V_R = 100 \text{ V}$	$T_{VJ} = ^{\circ}C$		tbd		Α
t _{rr}	reverse recovery time	$-di_F/dt = 200 A/\mu s$	$T_{VJ} = 25^{\circ}C$		45		ns
			$T_{VJ} = ^{\circ}C$		tbd		ns
C _J	junction capacitance	$V_R = 200 V; f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		60		pF



advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin ¹⁾			70	Α	
R _{thCH}	thermal resistance case to he	atsink		0.25		K/W	
T _{stg}	storage temperature		-55	5	150	°C	
Weight				6		g	
M _D	mounting torque		3.0	3	1.2	Nm	
F _c	mounting force with clip		20)	120	N	

¹⁾ I_{RMS} is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Part number

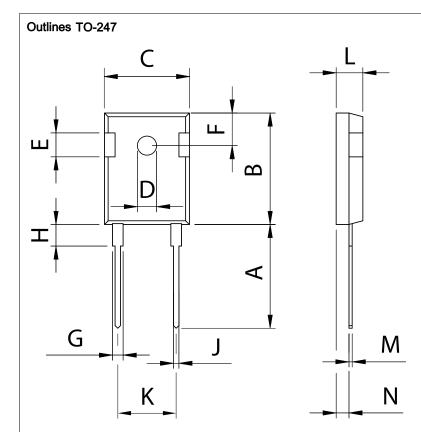
D = Diode

P = HiPerFRED

G = extreme fast

60 = Current Rating [A]

I = Single Diode 400 = Reverse Voltage [V]


HA = TO-247AD (2)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key
Standard	DPG 60 I 400 HA	DPG60I400HA	Tube	30	506242

advanced

Dim.	Millimeter Min. Max.		Inches Min. Max.		
A	19.81	20.32	0.780	0.800	
B	20.80	21.46	0.819	0.845	
C	15.75	16.26	0.610	0.640	
D	3.55	3.65	0.140	0.144	
E	4.32	5.49	0.170	0.216	
F	5.4	6.2	0.212	0.244	
G	1.65	2.13	0.065	0.084	
H	-	4.5		0.177	
J	1.0	1.4	0.040	0.055	
K	10.8	11.0	0.426	0.433	
L	4.7	5.3	0.185	0.209	
M	0.4	0.8	0.016	0.031	
N	1.5	2.49	0.087	0.102	