CXK1011P/M

512ビット(64語×8ビット)不揮発性メモリ

概要

CXK1011P/M は電気的消去, 電気的プログラムが可 能な64語×8ビット構成の E²PROM で, MNOS 型不揮 発性メモリトランジスタを用いています。

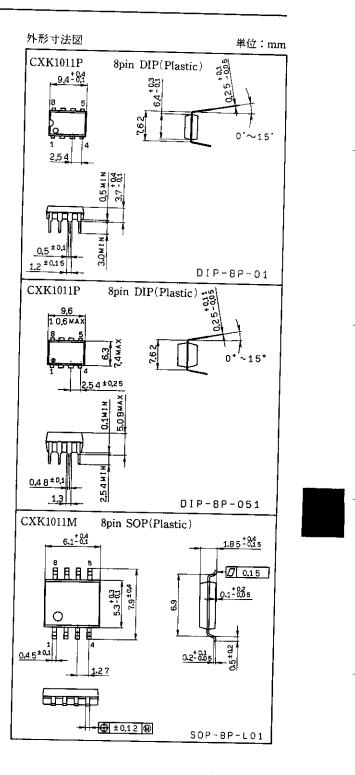
入力及び出力は、シリアルにデータ転送を行います。 チャージポンプ回路を内蔵しており、5 V 電源のみで全 ての動作を行い、またタイマ回路を内蔵していますので、 外付部品は不要で、消去、書き込みを自動的に行います。

電子チューナ用不揮発性チャンネルメモリ, DIP ス イッチの置き換え,各種定数の設定等,フィールドで即 座に書き換えが必要な読み出し専用メモリシステムに最 適です。

特長

●単一5 V 電源

- ●フルデコード64語×8ビット構成
- ●シリアルデータ転送
- ●1語単位及びチップ一括の書き換え可能
- ●無電源時の記憶保持時間 10年以上
- ●消去,書き込み回数 105回以上
- TTL IC 直接駆動可能
- ●低消費電力設計(25 mW 標準)

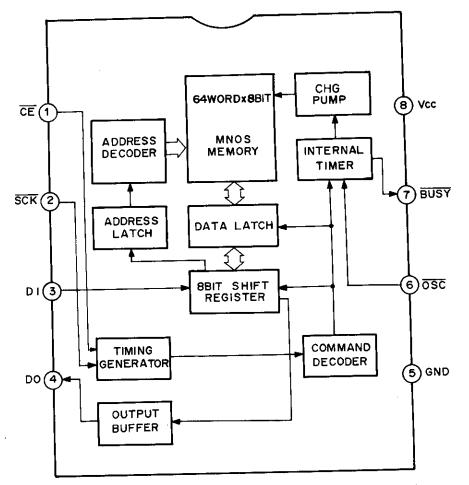

構 造 Pチャンネル MNOS IC

絶対最大定格(GND=0V)

●電源電圧	v_{cc}	$-0.3 \sim +7.0$	v
●入力電圧	V _{IN}	$-0.3 \sim V_{cc} + 0$).3 V
 動作温度 	Topr	$-40 \sim +85$	°C
●保存温度	T _{stg}	$-55 \sim +150$	°C

推奨動作条件(Ta=-40~+85°C、GND=0V)

	$40 \sim + 85 \text{ C},$	GND = 0V	
●電源電圧	Vcc	4.5~5.5	v
●クロック周波数	f _{clk}	DC~100	kHz
●ハイレベル入力電圧		$0.7 V_{cc} \sim V_{cc}$	v
●ローレベル入力電圧	VINL	0~0.3Vcc	v



80143B-HP

- 469 --

ブロック図及び端子配列図

端子説明

端子 番号	I/O	端子記号	端 子 説 明
1	IN	CE	チップイネーブル入力端子
2	IN	SCK	同期クロック入力端子
3	IN	DI	データ入力端子
4	OUT	DO	データ出力端子
5		GND	電源端子(通常0V)
6	IN	OSC	発振端子(内部回路使用時は,解放又は V _{cc} に固定)
7	OUT	BUSY	BUSY 信号出力端子
8	<u> </u>	Vcc	電源端子(通常+5V)

- 470 -

SONY

CXK1011P/M

電気的特性1

			$Ta = -40 \sim$	+85°C, \	$V_{cc} = 5V \pm$	10%, GN	D=0V
項目	記号		条件	最小值	標準値	最大値	単位
電源電流	Icc		+1		5	9	mA
入力プルアップ電流	I _{IU}	\overline{CE} , \overline{SCK} , DI, \overline{OSC}	V _{IN} =OV	-30	-60	- 180	μA
出力リーク電流	IOLK	DO, BUSY				±10	μA
出力電圧"高"レベル1	V _{OH1}	DO	$I_{OH} = -400 \mu A$	2.4			v
出力電圧"低"レベル1	VOLI	DO	$I_{OL} = 1.6 mA$	· ·		0.4	v
出力電圧"高"レベル2	V _{OH2}	BUSY	$I_{OH} = -400 \mu A$	2.4			v
出力電圧"低"レベル2	V _{OL2}	BUSY	$I_{OL} = 400 \mu A_{*2}$	······		0.4	v

*1. Erase 時及び Write 時を含みます。

*2. 図2参照

電気的特性 2

 $Ta = -40 \sim +85^{\circ}C$, $V_{cc} = 5V \pm 10\%$, GND = 0V

項目	記号	条件	最小値	標準値	最大值	単位
クロックパルス幅	t _{wH}		5	· · · · ·		μs
クロックパルス幅	t _{wL}		5			μs
データ入力セットアップ時間	t _{DS}		1		.	μs
データ入力ホールド時間	t _{DH}		0		·	μs
立ち上がり立ち下がり時間	t _{r,tf}				1	μs
チップイネーブルセットアップ時間	t _{ces}		5		· · · · · · · · · · · · · · · · ·	μs
チップイネーブルホールド時間1	t _{CEH1}		5			μs
チップイネーブルホールド時間2	t _{CEH2}		100	· · · · ·		μs
クロックセットアップ時間	t _{CKS}		5	· · · · · · · · · · · · · · · · · · ·		μs
データ遅延時間	t _{op}	DC, $C_L = 100 \text{pF}$			4	μs
BUSY 出力遅延時間+3	t _{BD}	$\overline{\text{BUSY}}, R=10k\Omega$			500	μs
読出回数	N _R	リフレッシュ間	107	109		ē
プログラム時間	t _{PP}	内部タイマー使用時*1		40	100	ms
消去時間	t _E	外部コントロール時*2	16	20	100	ms
書き込み時間	tw	外部コントロール時*2	16	20	100	ms
記憶保持時間1	t _{MH1}	10 ⁴ 回書き換え後 Ta=85°C で保存	10			年
記憶保持時間 2	t _{MH2}	10 ⁵ 回書き換え後 Ta=85°C で保存	1			年

*1. Ta=25°C での値です。(図1参照)

*2. t_Eおよび twは16ms~100ms の範囲で使用されれば、消去、書き込み機能上全く問題ありません。

*3. 図2参照

命令表

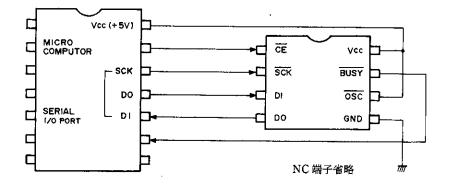
M 4	M 3	M 2	M 1	動作命令
0	0	0	0	ノーオペレーション
0	0	1	0	DW:メモリ書き込み
0	1	0	0	ALDW:全バイト書き込み
0	1	1	0	テストモード,使用禁止
1	0	0	0	ノーオペレーション
1	0	1	0	DR:メモリ読み出し
1	1	0	0	テストモード,使用禁止
1	1	1	0	テストモード,使用禁止
×	×	X	1	テストモード,使用禁止

動作説明 (1) タイミング 同期クロック (SCK) の立ち上がりで、DI よりデータが取り込まれ、立ち下がりで DO よりデータが出力されま す。 入力データは、SCK の立ち上がりより1µs 以前に安定となっている必要があります。 (2) DR: Data Read (メモリ読み出し) CEを"L"にしてから、5µs以降に第1クロックを入力します。 アドレスデータ (A6~A1),モードデータ (M4M3M2M1 = 1010)を入力しますと17番目のクロックから立ち下 がりに同期して D7 D6…D0と順に出力されます。 CEは、24番目のクロックが立ち上がってから5μs以降に"H"して下さい。 (3) DW: Data Write (メモリ書き込み) CEを"L"にしてから、5µs以降に第1クロックを入力します。 アドレスデータ (A6~A1), モードデータ (M4M3M2M1 = 0010), データ (D7~D0) を入力しますと, 24番目 のクロックの立ち上がりから自動的に消去、書き込みを行います。 BUSY 端子は、消去、書き込み時には "L"を、書き込み終了時には "H"を出力しますので、 "H"出力後5 µs 以 降に \overline{CE} を "H" にして下さい。 BUSY 端子を使用しない場合は、100 ms(tpp Max) 以降に CE を "H" にして下さい。 (4) ALDW: All Byte Data Write (全バイト書き込み) モードデータ (M4M3M2M1 = 0100)を入力しますと、全アドレスに同時に同じデータ (D7~D0)を書き込みま す。 CE タイミング, \overline{BUSY} 出力は(3)と同じです。 (5) 消去, 書き込み外部制御 消去,書き込み用のパルスは,内蔵のC,Rによって発生しますが,外部から制御する事も可能です。 DW モード,又は ALDW モードで, OSC 端子を"L"にする事により, SCK 端子を用いて消去, 書き込みの制御 が出来ます。 t_w (20 ms Typ) の間に消去され、t_w (20 ms Typ) の間に書き込まれます。 tw経過後 SCK 端子を "H"にすると、書き込み終了パルスが発生しますが、実際の終了はパルスが発生してから 約50 μs後です。(50 μs Typ, 100 μs Max) この時 $\overline{\text{BUSY}}$ 端子が"L" \rightarrow "H"と変わりますので、"H"となってから5 μ s 以降に $\overline{\text{CE}}$ 端子を"H"にして下 さい。 BUSY 端子を使用しない時は、SCK 端子を"L"→"H"(tw)後、100 µs 以降に CEを"H"にして下さ ∿ړ، (6) ALDW モードの利用 メモリ素子への書き込みは,「消去」→「書き込み」というサイクルを経て行われます。通常の書き込み (DW モー ド)では、64アドレス全てを書き込むのに、 $64 \times t_{PP}(X ll, t_E + t_W) = 2.56 \operatorname{sec}(Typ)$ の時間を必要とします。 CXK1011M では,「消去状態」と「データ"0"」とを対応させています。一旦, すべてのアドレスに"0"を書 き込んだ後 (消去状態),各アドレスにデータを書き込んでゆくことにより,プログラム時間の短縮が可能です。 ALDW $\neq - k$, D7 D6...D0 = 00...0 $t_E = 20 \text{ ms}, t_W = 20 \text{ ms}$ DW モード、A6…A1、D7…D0(各アドレス、データ)

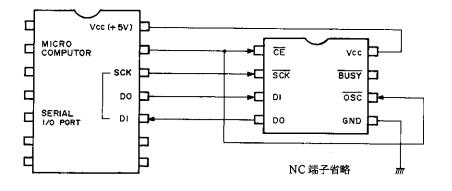
 $t_E = 1 \text{ ms}(\text{Min}), t_W = 20 \text{ ms}$

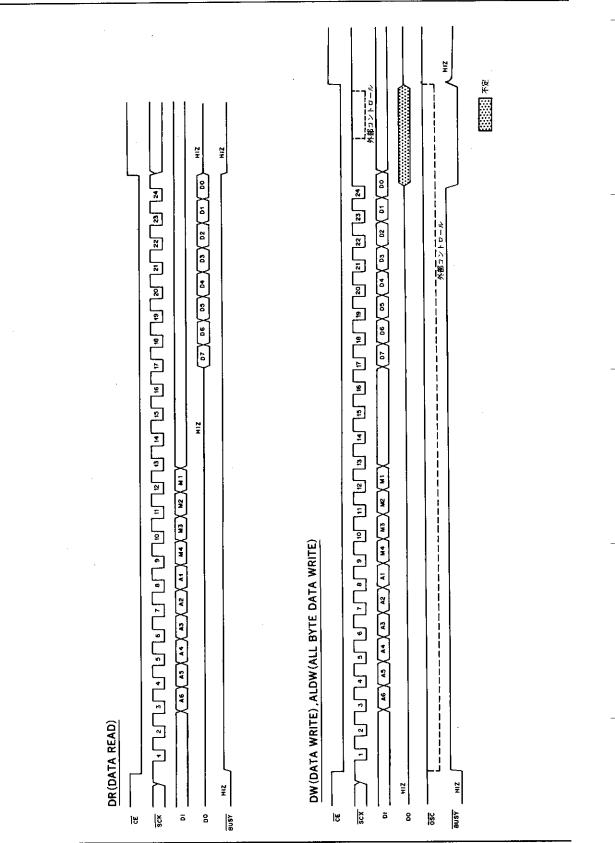
この場合、プログラム時間は、

 $(20 \text{ ms} + 20 \text{ ms}) + 64 \times (1 \text{ ms} + 20 \text{ ms}) = 1.38 \text{ sec}$ となります。


- 472 -

CXK1011P/M

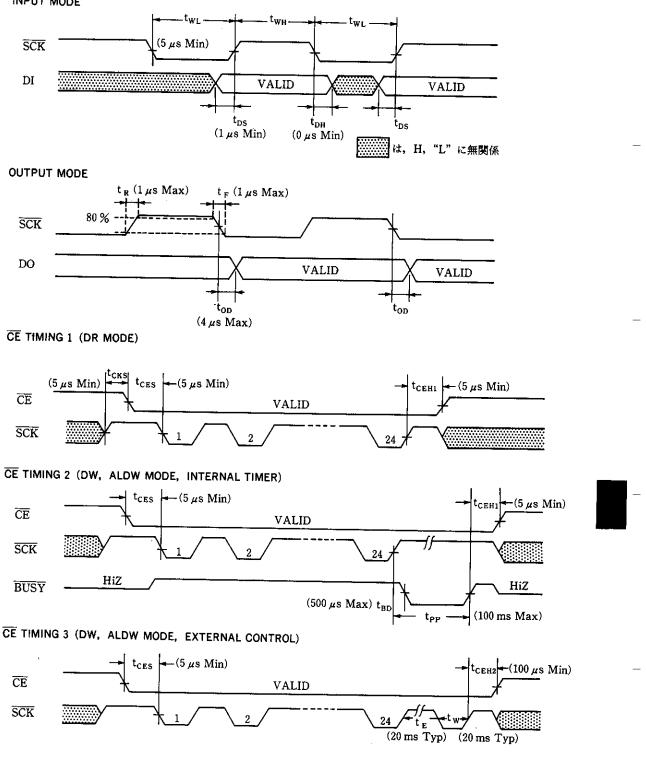

応用回路例

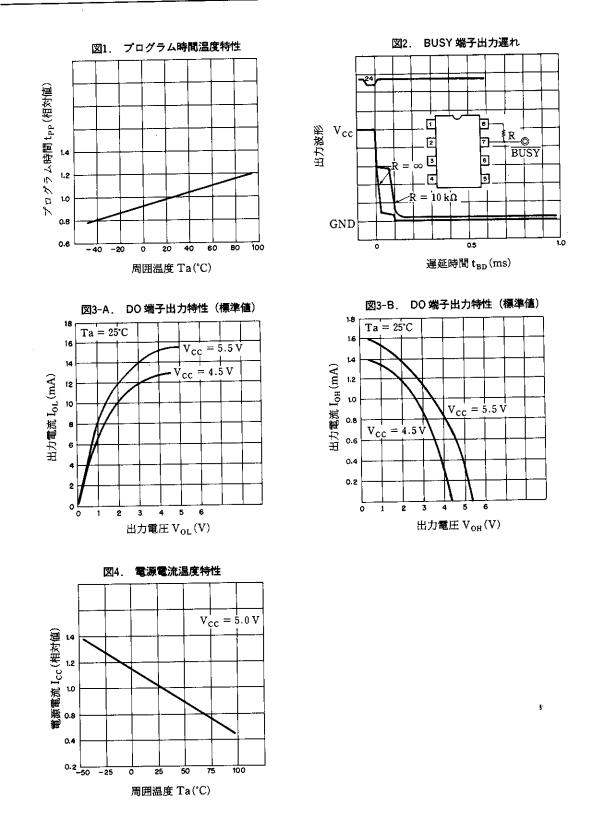

(1) 内部タイマ回路使用

(シリアルポート使用例,一般ポートでも使用可能です。BUSY 端子を用いない事も可能です。)

(2) 外部コントロール使用

- 474 -


SONY


SONY

CXK1011P/M

入出力タイミングチャート

