FAIRCHILD

SEMICONDUCTOR

MM74C174 Hex D-Type Flip-Flop

General Description

The MM74C174 hex D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. All have a direct clear input. Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clear is independent of clock and accomplished by a low level at the clear input. All inputs are protected by diodes to V_{CC} and GND.

October 1987 Revised May 2002

MM74C174 Hex D-Type Flip-Flop

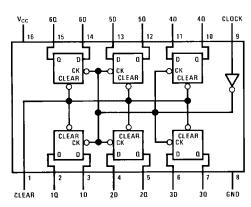
Ordering Code:

Order Number	Package Number	Package Description
MM74C174M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C174N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Device also available i	n Tape and Reel. Specify	by appending suffix letter "X" to the ordering code.

Truth Table

Features

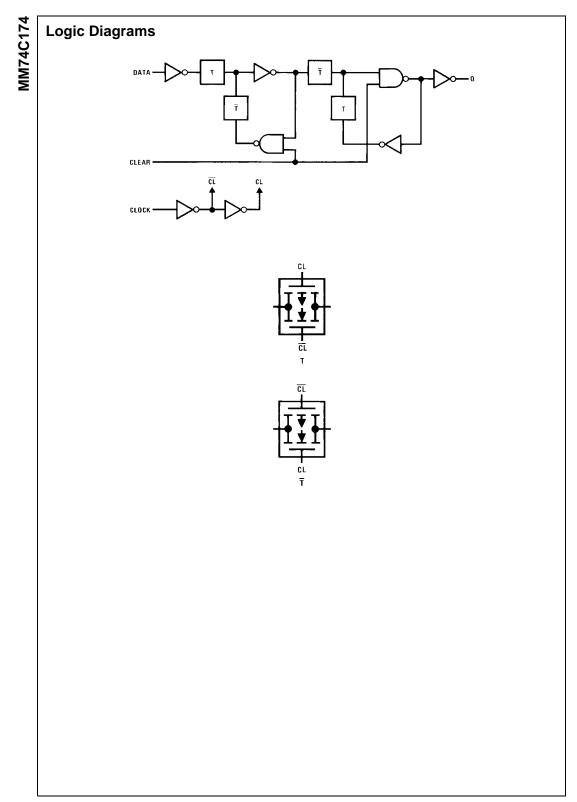
■ Wide supply voltage range: 3.0V to 15V


■ High noise immunity: 0.45 V_{CC} (typ.)

■ Guaranteed noise margin: 1.0V

Low power TTL compatibility:

Fan out of 2 driving 74L


Connection Diagram

Top View

Inputs Output Clock Clear D Q Х Х L L ↑ н н н н î L L н Q L Х

© 2002 Fairchild Semiconductor Corporation DS005899

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} +0.3V
Operating Temperature Range	–55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C

MM74C174

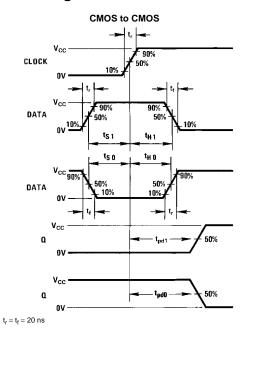
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

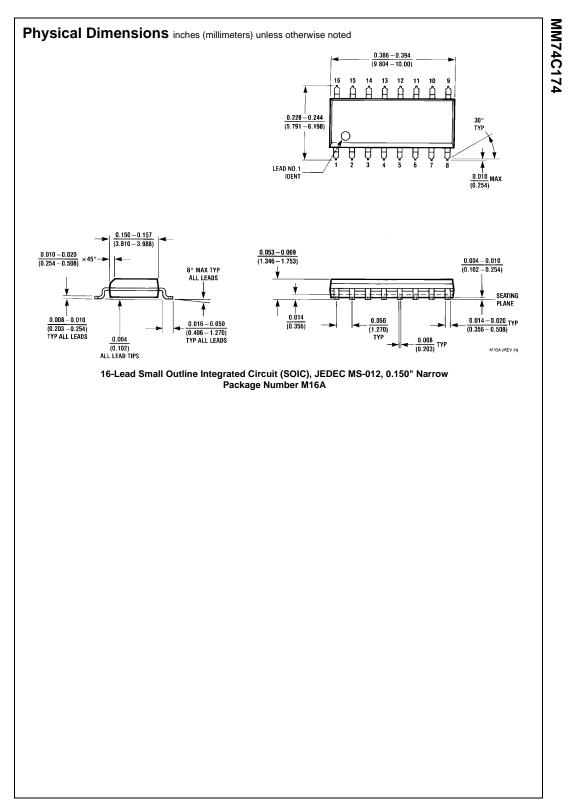
DC Electrical Characteristics

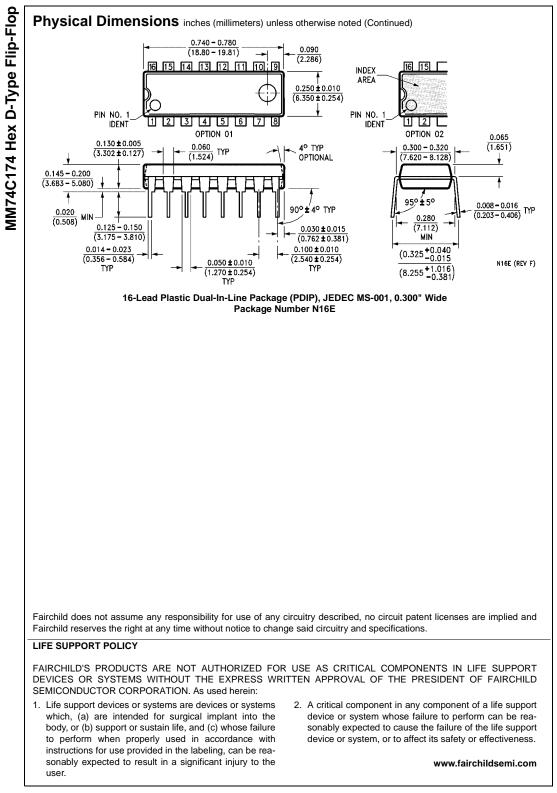
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS			+		4
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	v
		$V_{CC} = 10V$.	2.0	v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC}=10V,\ I_O=-10\ \mu A$	9.0	.		
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \ \mu A$			0.5	.5 V
		$V_{CC} = 10V$, $I_{O} = 10 \ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
Icc	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ
CMOS/LPT	TL INTERFACE		· · ·	<u> </u>		
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} -1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (short circuit current)				
ISOURCE	Output Source Current	$V_{CC} = 5V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C, \ V_{OUT} = 0V$	-1.75	-3.5		
ISOURCE	Output Source Current	V _{CC} = 10V	-8.0	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C, \ V_{OUT} = 0V$	-0.0	-15		1115
I _{SINK}	Output Sink Current	$V_{CC} = 5V$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C, \ V_{OUT} = 0V$	1.75	3.0		
I _{SINK}	Output Sink Current	$V_{CC} = 5V$	8.0	16		mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{OUT} = 0V$	0.0	10		ШA

· A =0 ·	$T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise noted									
Symbol	Parameter	Conditions	Min	Тур	Max	Uni				
t _{pd}	Propagation Delay Time to a Logical	$V_{CC} = 5V$		150	300	300 ns				
	"0" or Logical "1" from Clock to Q	$V_{CC} = 10V$		70	110					
t _{pd}	Propagation Delay Time to	$V_{CC} = 5V$		110	0 300					
	a Logical "0" from Clear	$V_{CC} = 10V$		50	110	ns				
t _{S1} , t _{S0}	Time Prior to Clock Pulse that	$V_{CC} = 5V$	75			ns				
	Data Must be Present	$V_{CC} = 10V$	25							
t _{H1} , t _{H0}	Time after Clock Pulse	$V_{CC} = 5V$	0	-10						
	that Data Must be Held	$V_{CC} = 10V$	0	-5.0		ns				
t _W	Minimum Clock Pulse Width	$V_{CC} = 5V$		50	250					
		$V_{CC} = 10V$		35	100	00 ns				
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$		65	140	ns				
		$V_{CC} = 10V$		35	70 r					
t _r , t _f	Maximum Clock Rise and	$V_{CC} = 5V$	15	>1200						
	Fall Time	$V_{CC} = 10V$	5.0	>1200		μs				
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	6.5						
		$V_{CC} = 10V$	5.0	12		MHz				
C _{IN}	Input Capacitance	Clear Input (Note 3)		11	pF					
		Any Other Input		5.0						
CPD	Power Dissipation Capacitance	Per Package (Note 4)		95		pF				

Note 2: AC Parameters are guaranteed by DC correlated testing.


Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.


AC Test Circuit

Switching Time Waveforms

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.