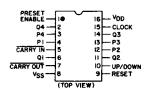


Data sheet acquired from Harris Semiconductor SCHS071B – Revised July 2003

CMOS Presettable Up/Down Counters

High-Voltage Types (20-Volt Rating)
CD4510B — — BCD Type
CD4516B — — Binary Type

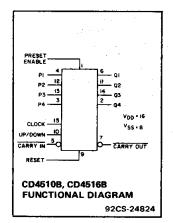

CD4510B Presettable BCD Up/Down Counter and the CD4516 Presettable Binary Up/Down Counter consist of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as counters. These counters can be cleared by a high level on the RESET line, and can be preset to any binary number present on the jam inputs by a high level on the PRESET ENABLE line. The CD4510B will count out of non-BCD counter states in a maximum of two clock pulses in the up mode, and a maximum of four clock pulses in the down mode.

If the CARRY-IN input is held low, the counter advances up or down on each positive-going clock transition. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the CARRY-OUT of a less significant stage to the CARRY-IN of a more significant stage.

The CD4510B and CD4516B can be cascaded in the ripple mode by connecting the CARRY-OUT to the clock of the next stage. If the UP/DOWN input changes during a terminal count, the CARRY-OUT must be gated with the clock, and the UP/DOWN input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage. (See Fig. 15).

These devices are similar to types MC14510 and MC14516.

The CD4510B and CD4516B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4516B types also are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix).



CD4510B, CD4516B
TERMINAL ASSIGNMENT

CD4510B, CD4516B Types

Features:

- Medium-speed operation -f_{CL} = 8 MHz typ. at 10 V
- Synchronous internal carry propagation
- Reset and Preset capability
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package temperature range;
 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD} = 5 V
 2 V at V_{DD} = 10 V
 2.5 V at V_{DD} = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Up/Down difference counting
- Multistage synchronous counting
- Multistage ripple counting
- Synchronous frequency dividers

OPERATING CONDITIONS AT TA = 25°C, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

Characteristic	V _{DD}	Min.	Max.	Units
Supply Voltage Range (At TA = Full Package-Temperature Range)		3	18	v
	5	150		
Clock Pulse Width, t _W	10	75	-	ns
	15	60	-	
	5	_	2	
Clock Input Frequency, f _{CL}	10	-	4	MHz
	15	-	5.5	
	5	150	_	
Preset Enable or Reset Removal Time	10	80	- 1	กร
	15	60	_	
	5	_	15	
Clock Rise and Fall Time, t _r CL, t _f CL*	10 15	_	5 5	μs
	5	130		
Carry-In Setup Time, t _S	10	60	- 1	ns
	15	45	_	
	5	360	_	
Up-Down Setup Time, t _S	10	160	_	ns
	15	110	_	
	5	220	_	
Preset Enable or Reset Pulse Width, tw	10	100	_ }	ns
	15	75	_	

[•]Time required after the falling edge of the reset or preset enable inputs before the rising edge of the clock will trigger the counter (similar to setup time).

^{*}If more than one unit is cascaded in the parallel clocked application, t_rCL should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the carry output driving stage for the estimated capacitive load.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (V _{DD})	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For TA = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
For T _A = +100°C to +125°C DEVICE DISSIPATION PER OUTPUT TRANSISTOR	Derate Linearity at 12mW/°C to 200mW
• •	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	Types)100mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package OPERATING-TEMPERATURE RANGE (T _A)	1Types)100mW 55°C to +125°C
DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package)	1Types)100mW 55°C to +125°C

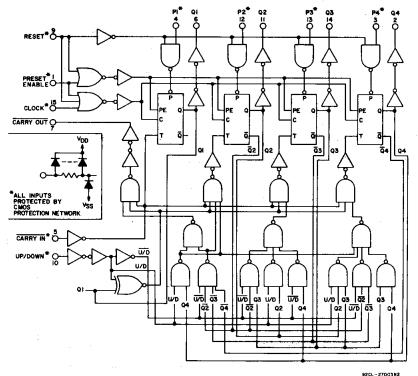


Fig.3 — Logic Diagram for CD45108.

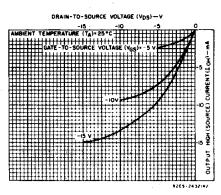


Fig.5 – Minimum output high (source) current characteristics.

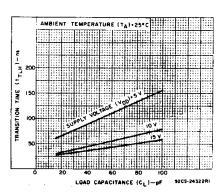


Fig.6 — Typical transition time vs. load capacitance.

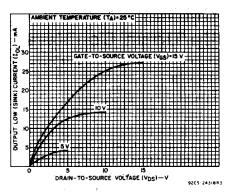


Fig.1 - Typical output low (sink) current characteristics.

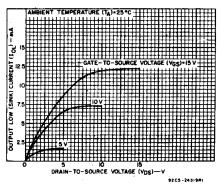
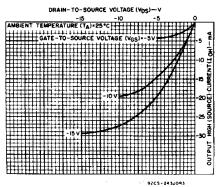


Fig. 2 – Minimum output low (sink) current characteristics.



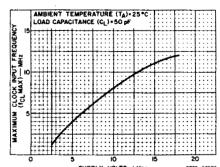
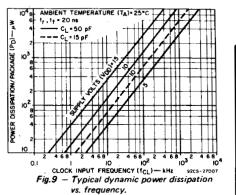

Fig.4 - Typical output high (source) current characteristics.

Fig. 7 — Typical propagation delay time vs. load capacitance for clock-to-Q outputs.


STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	COND	is	LIMITS AT INDICATED TEMPERATURES (°C)							UNITS	
ISTIC	٧o	VIN	VDD						+25		UNIT
	(v)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	l
Quiescent Device		0,5	5	5	5	150	150	_	0.04	5	
Current,	_	0,10	10	10	10	300	300	-	.0.04	10	
IDD Max.	_	0,15	15	20	20	600	600	-	0.04	20	μΑ
	-	0,20	20	-100	100	3000	3000	-	0.08	100	ŀ
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		ĺ
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current, IOH Min.	9.5	0,10	10	-1.6	~1.5	-1.1	-0.9	-1.3	-2.6	-	
TOH WITH.	13.5	0,15	15	4,2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5		0	.05		_	. 0	0.05	
Low-Level, VOL Max.	_	0,10	10		0	.05		_	0	0.05	
VOL Max.		0,15	15		Ō	.05		_	0	0.05	
Output Voltage:		0,5	5		4	.95		4.95	- 5	-	ľ
High-Level,	_	0,10	10		9	.95		9.95	10	-	
VOH Min.	_	0,15	15		14	.95		14.95	15		
Input Low	0.5, 4.5		5		1	.5		_	_	1.5	
Voltage,	1, 9		10			3		_	_	3	
VIL Max.	1.5,13.5	-	15			4		-		4	
Input High	0.5, 4.5	-	5		3	3.5		3.5	_		V
Voltage,	1, 9		10			7		7	_		
VIH Min.	1.5,13.5	-	15		1	1		11	_	_	
Input Current	_	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

SUPPLY VOLTS -- VDD 92CS-27006

Fig. 8 -- Typical maximum clock input frequency vs. supply voltage.

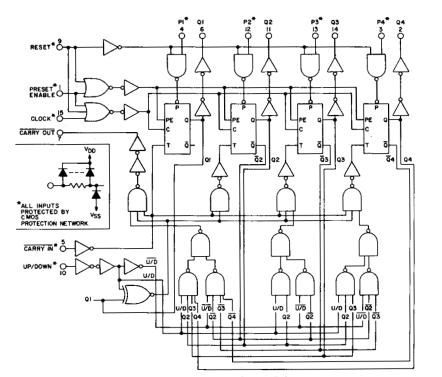


Fig. 16 - Logic Diagram for CD4516B.

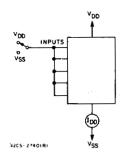


Fig. 11 — Quiescent-device-current test circuit.

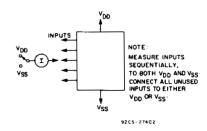


Fig. 12 - Input-current test circuit.

92CL - 27004R2

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_{A}$ = 25°C, C $_{L}$ = 50 pF, Input t $_{r}$, t $_{f}$ = 20 ns, R $_{L}$ = 200 k Ω

Characteristic	Conditions VDD (V)	Al Min.	Units		
Propagation Delay Time (tpHL, tpLH):		1,4,11,1	Тур.	Max.	
Clock-to-Q Output (See Fig. 10)	5 10 15	_ _ 	200 100 75	400 200 150	ns
Preset or Reset-to-Q Output	5 10 15		210 105 80	420 210 160	ns
Clock-to-Carry Out	5 10 15	- - -	240 120 90	480 240 180	ns
Carry-In-to-Carry Out	5 10 15	 - -	125 60 50	250 120 100	ns
Preset or Reset-to-Carry Out	5 10 15	- - -	320 160 125	640 320 250	ns
Transition Time (t _{THL} , t _{TLH}) (See Fig. 9)	5 10 15	_ _ _	100 50 40	200 100 80	ns
Max. Clock Input Frequency (f _{CL})	5 10 15	2 4 5.5	4 8 11	- - -	MHz
Input Capacitance (C _{IN})		-	5	7.5	pF
Set-up Time, t _S Preset Enable to J _n	5 10 15	25 10 10	12 6 5	<u>-</u>	
Hold times, t _H Clock to Carry-In	5 10 15	60 30 30	30 4 1		ns
Clock to Up/Down	5 10 15	30 30 30	10 4 5		
Preset Enable to J _n	5 10 15	70 40 40	35 20 20		

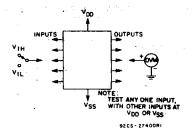
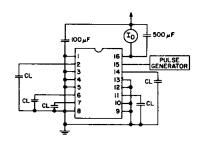



Fig. 13 - Input-voltage test circuit.

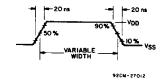
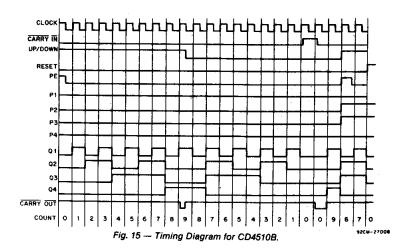



Fig. 14 — Power-dissipation test circuit and input waveform,

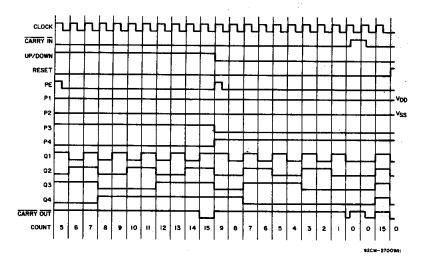
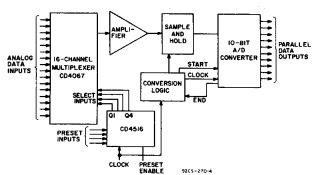
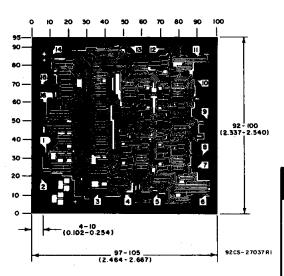
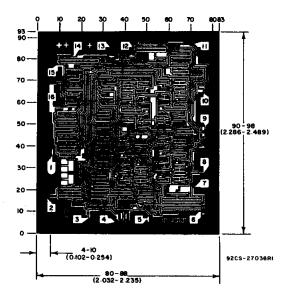



Fig. 16 — Timing diagram for CD4516B.

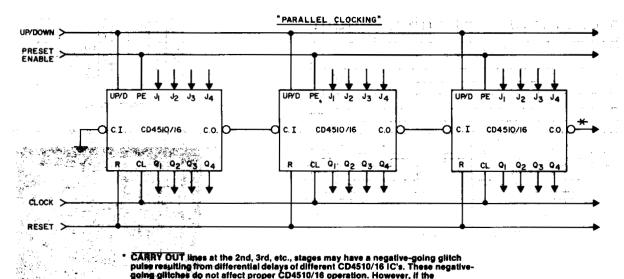


This acquisition system can be operated in the random access mode by jamming in the channel number at the present inputs, or in the sequential mode by clocking the CD4516B.

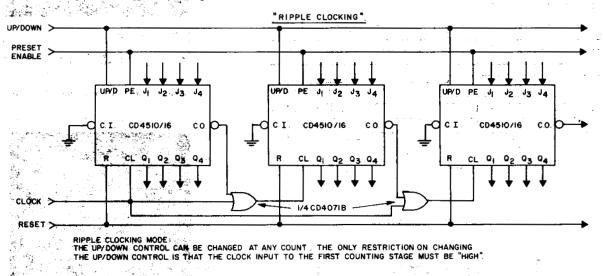

Fig. 17 — Typical 16-channel, 10-bit data acquisition system.

CL	lö	U/D	PΕ	R	ACTION
'X	1	Х	0	٥	NO COUNT
5	0	. 1	٥	٥	COUNT UP
7	0	0	Ó	0	COUNT DOWN
X	X	X	1		PRESET
X	X	X	X	1	RESET
-	-		001	um	CARE

TRUTH TABLE



Dimensions and Pad Layout for CD45108H.



Dimensions and Pad Layout for CD4516BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

* CARRY OUT lines at the 2nd, 3rd, etc., stages may have a negative-going glitch pulse resulting from differential delays of different CD4510/16 IC's. These negative-going glitches do not affect proper CD4510/16 operation. However, if the CARRY OUT signals are used to trigger other edge-sensitive logic devices, such as FF's or counters, the CARRY OUT signals should be gated with the clock signal using a 2-input OR gate such as CD4071B.

RIPPLE CLOCKING MODE:
THE UP/DOWN CONTROL CAR BE CHANGED AT ANY COUNT. THE ONLY RESTRICTION ON CHANGING
THE UP/DOWN CONTROL IS THAT THE CLOCK INPUT TO THE FIRST COUNTING STAGE MUST BE "HIGH".

For exacading counters operating in a fixed up-count or down-count mode, the OR gallet are military in the CL input at the large with CI grounded.

92CL-17194R5

Fig. 18 — Cascading counter packages.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	U		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD4510BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4510BE	Samples
CD4510BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4510BE	Samples
CD4510BNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4510B	Samples
CD4510BNSRG4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4510B	Samples
CD4510BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM510B	Samples
CD4516BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4516BE	Samples
CD4516BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4516BE	Samples
CD4516BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4516BF	Samples
CD4516BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4516BF3A	Samples
CD4516BNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4516B	Samples
CD4516BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples
CD4516BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

10-Jun-2014

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

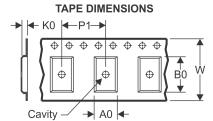
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4516B, CD4516B-MIL:

Catalog: CD4516B

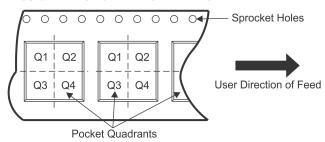
Military: CD4516B-MIL

NOTE: Qualified Version Definitions:

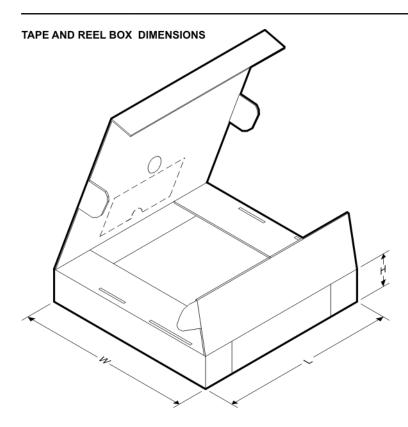

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ſ	P1	Pitch between successive cavity centers

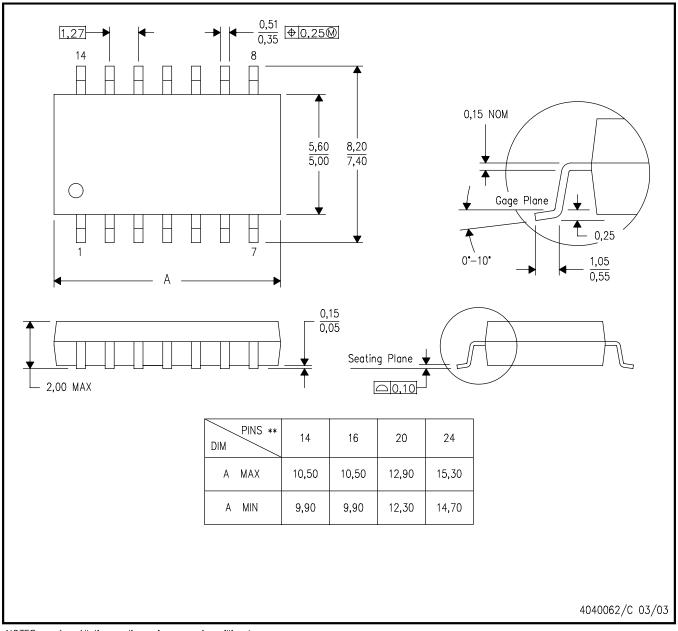

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ulmensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4510BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4510BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4516BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4516BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 26-Jan-2013

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4510BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD4510BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD4516BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD4516BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

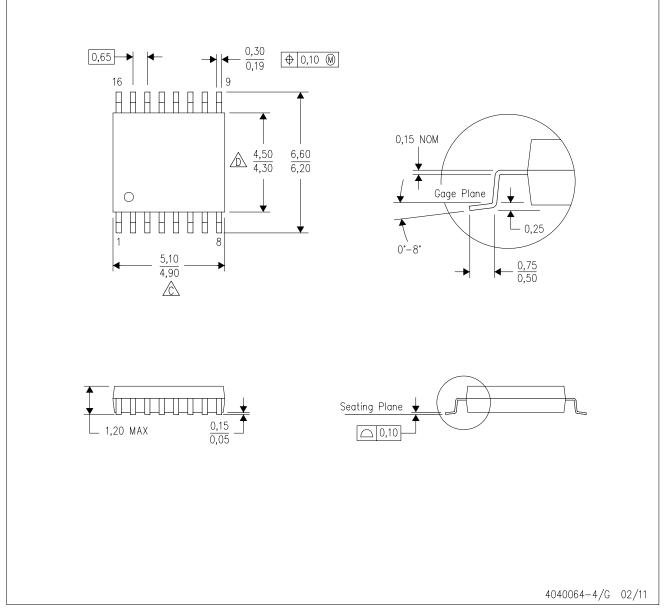
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

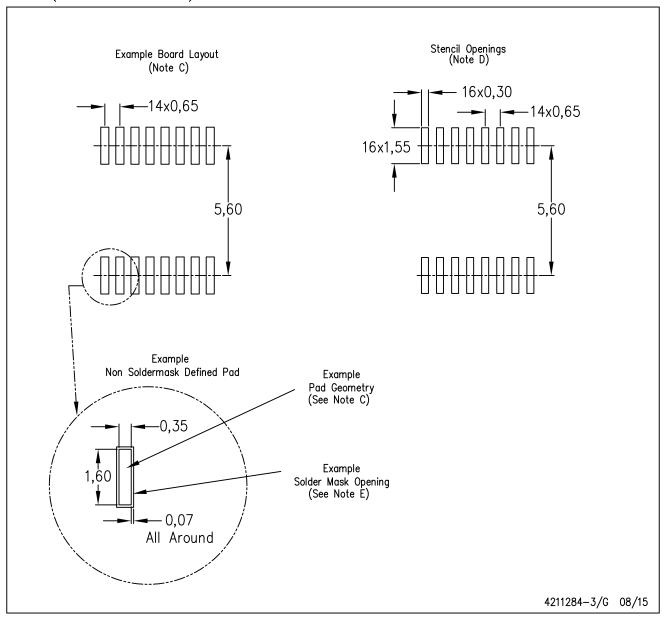
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.