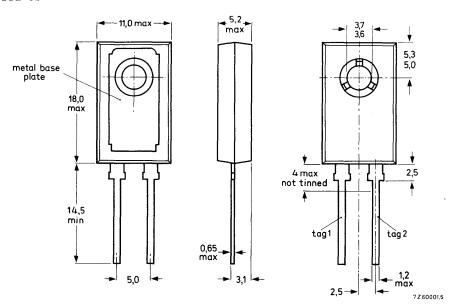
SILICON RECTIFIER DIODES


Plastic-encapsulated rectifier diodes intended for power rectifier applications. Normal and reverse polarity types are available.

QUICK REFERENCE DATA						
		BYX49-300(R)	600(R)	1200(R))	
Repetitive peak reverse voltage	v_{RRM}	max. 300	600	1200	V	
Average forward current		I _{F(AV)}	max.	6	A	
Non-repetitive peak forward current		I_{FSM}	max.	40	A	

MECHANICAL DATA (see also page 2)

Dimensions in mm

SOD-38

The exposed metal base-plate is directly connected to tag 1.

Products approved to CECC 50 009-011, available on request

MECHANICAL DATA (continued)

Net mass: 2,5 g

Recommended diameter of fixing screw: 3,5 mm

Torque on screw

when using washer and heatsink compound: min. $0.95 \ \text{Nm} \ (9.5 \ \text{kg cm})$

max. 1,5 Nm (15 kg cm)

Accessories:

supplied with device: washer

available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS

		BYX 49-300 to BYX 49-1200	BYX 49-300R to BYX 49-1200R
Base-pla	ate :	cathode	anode
Tag 1	:	cathode	anode
Tag 2	:	anode	cathode

All information applies to frequencies up to 400 Hz.

PATINGS	Limiting	values	in	accordance	with	the	Absolute	Maximum	System	(IEC 134)	١
KAIIIVO	Limiting	values	TIT	accordance	AN TELL	LIIC	Absolute	Maxilliulli	Dystem	(11:0104)	,

KATINGS Limiting values in accordance	with the	Absolu	ic maxiii	ium byst	(11101	.04)
Voltages		BYX49	-300(R)	600(R)	1200(R)	
Continuous reverse voltage	v_R	max.	200	400	800	v
Crest working reverse voltage	v_{RWM}	max.	200	400	800	V
Repetitive peak reverse voltage $(\delta = 0,01)$	V _{RRM}	max.	300	600	1200	V
Non-repetitive peak reverse voltage (t ≤ 10 ms)	v_{RSM}	max.	300	600	1200	V
Currents						
Average forward current (averaged over any 20 ms period) up to $\rm T_{mb}$ = $\rm 85~^{o}C$	I _{F(A} V	7)	max.	6,0	A	
at $T_{mb} = 120$ °C	IF(AV	⁷)	max.	3,0	A	
without heatsink; at $T_{amb} = 50$ °C	I _{F(A} V	7)	max.	1,1	Α	
Forward current (d.c.)	$I_{\mathbf{F}}$		max.	9,5	Α	

 I_{FSM}

 I^2t

	•
R.M.S.	forward current

R.M.S. forward current
Repetitive peak forward current
Non-repetitive peak forward current (t = 10 ms; half sine wave) $T_j = 150$ °C prior to surge I^2t for fusing (t = 10 ms)

) emperatures
Storage temperature
Junction temperature

$\Gamma(AV)$			
IF(AV)	max.	3,0	A
I _{F(AV)}	max.	1,1	Α
$I_{\mathbf{F}}$	max.	9,5	Α
^I F(RMS)	max.	9,5	Α
I_{FRM}	max.	20	Α

max.	8,0	A^2s

40

Α

$$T_{\mathrm{stg}}$$
 -55 to $+125$ $^{\mathrm{o}}\mathrm{C}$ T_{j} $\mathrm{max.}$ 150 $^{\mathrm{o}}\mathrm{C}$

max.

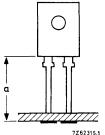
BYX49 SERIES

THERMAL RESISTANCE

From junction to mounting base	R _{th j-mb}	=	4,5	OC/W
Transient thermal impedance; t = 1 ms	Z _{th j-mb}	=	0,3	°C/W

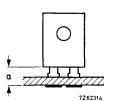
Influence of mounting method:

1. Heatsink mounted


From mounting base to heatsink OC/W a. with heatsink compound 1,5 R_{th} mb-h b. with heatsink compound and °C/W 56316 mica washer R_{th} mb-h 2,7 c. without heatsink compound °C/W R_{th} mb-h d. without heatsink compound; oC/W with 56316 mica washer 5 R_{th} mb-h

2. Free air operation

The quoted values of $R_{th\ j-a}$ should be used only when no other leads run to the tie-points.


From junction to ambient in free air mounted on a printed circuit board at a = maximum lead length and with a copper laminate

 $a. > 1 cm^2$ $b. < 1 cm^2$ $R_{th j-a} = 50 \text{ }^{\circ}\text{C/W}$ $R_{th j-a} = 55 \text{ }^{\circ}\text{C/W}$

at a lead-length a = 3 mm and with a copper laminate

 $c. > 1 cm^2$ $d. < 1 cm^2$ $R_{th j-a} = 55 \text{ °C/W}$ $R_{th j-a} = 60 \text{ °C/W}$

CHARACTERISTICS

Forward voltage

$$I_F = 20 \text{ A}; T_i = 25 \text{ oC}$$

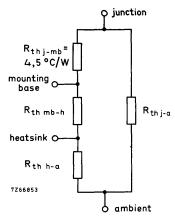
 V_{F} < 2,3 V^{-1})

Reverse current

$$V_R = V_{RWMmax}$$
; $T_j = 125 \text{ }^{\circ}\text{C}$

 I_R < 200 μA

SOLDERING AND MOUNTING NOTES


- 1. Soldered joints must be at least 2,5 mm from the seal.
- The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- 3. The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when bending.
- For good thermal contact heatsink compound should be used between base-plate and heatsink.

¹) Measured under pulse conditions to avoid excessive dissipation.

OPERATING NOTES

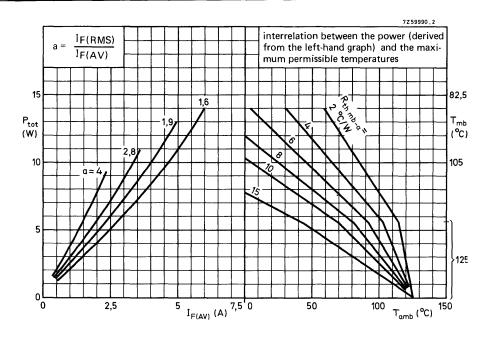
Dissipation and heatsink considerations:

 The various components of junction temperature rise above ambient are illustrated below:

b. The method of using the graph on page 7 is as follows:

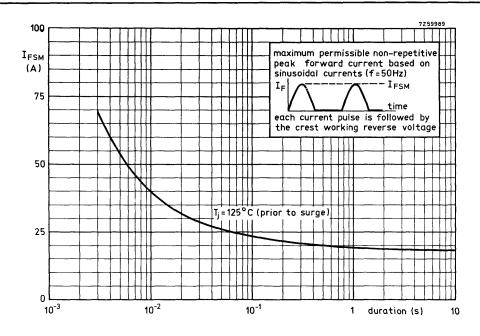
Starting with the curve of maximum dissipation as a function of $I_{F(AV)}$, for a particular current value trace upwards to meet the appropriate form factor curve. Trace horizontally until the $R_{th\ mh-a}$ curve is reached.

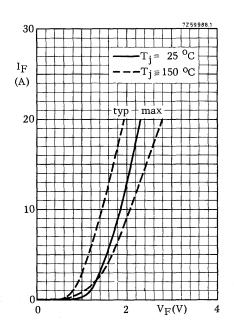
horizontally until the R $_{th\ mb-a}$ curve is reached. Finally trace upwards from the T_{amb} scale. The intersection determines the R $_{th\ mb-a}$ required.

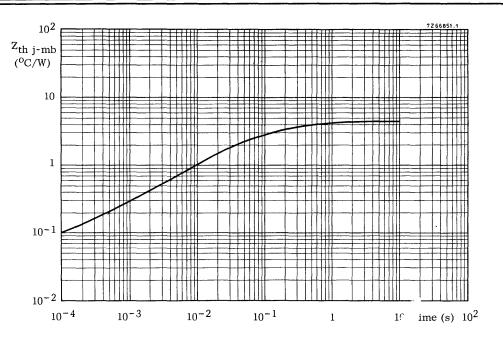

The heatsink thermal resistance value $(R_{th h-a})$ can now be calculated from:

$$R_{th\ h-a} = R_{th\ mb-a} - R_{th\ mb-h}$$

Any measurement of heatsink temperature should be made immediately adjacent to the device.


c. The heatsink curves are optimised to allow the junction temperature to run up to 150 $^{o}\mathrm{C}$ (T $_{i\,m\,ax})$ whilst limiting T $_{mb}$ to 125 $^{o}\mathrm{C}$ (or less).


7



November 1975

